Fibonacci Identities Derived from Path Counting in Automata

نویسندگان

  • ARTHUR BENJAMIN
  • DALE GERDEMANN
چکیده

Combinatorial proofs are appealing since they lead to intuitive understanding. Proofs based on other mathematical techniques may be convincing, but still leave the reader wondering why the result holds. A large collection of combinatorial proofs is presented in [1], including many proofs of Fibonacci identities based on counting tilings of a one-dimensional board with squares and dominoes. An alternative approach, much in the same spirit, is to base proofs on automata that recognize, i.e., accept, such tilings. Although many of the same results can be obtained, we will show here that the automata-based approach in some cases has interesting advantages. As a simple example, we may start with a deterministic finite state automaton in Figure 1, which corresponds very directly to square-domino tilings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Approaches to Fibonacci Identities

Many combinatorialists live by Mach’s words, and take it as a personal challenge. For example, nearly all of the Fibonacci identities in [5] and [6] have been explained by counting arguments [1, 2, 3]. Among the holdouts are those involving infinite sums and irrational quantities. However, by adopting a probabilistic viewpoint, many of the remaining identities can be explained combinatorially. ...

متن کامل

Identities for Fibonacci and Lucas Polynomials derived from a book of Gould

This note is dedicated to Professor Gould. The aim is to show how the identities in his book ”Combinatorial Identities” can be used to obtain identities for Fibonacci and Lucas polynomials. In turn these identities allow to derive a wealth of numerical identities for Fibonacci and Lucas numbers.

متن کامل

Generalized Bivariate Fibonacci-Like Polynomials and Some Identities

In [3], H. Belbachir and F. Bencherif generalize to bivariate polynomials of Fibonacci and Lucas, properties obtained for Chebyshev polynomials. They prove that the coordinates of the bivariate polynomials over appropriate basis are families of integers satisfying remarkable recurrence relations. [7], Mario Catalani define generalized bivariate polynomials, from which specifying initial conditi...

متن کامل

Duality of Graded Graphs

A graph is said to be graded if its vertices are divided into levels numbered by integers, so that the endpoints of any edge lie on consecutive levels. Discrete modular lattices and rooted trees are among the typical examples. The following three types of problems are of interest to us: (1) path counting in graded graphs, and related combinatorial identities; (2) bijective proofs of these ident...

متن کامل

Toeplitz transforms of Fibonacci sequences

We introduce a matricial Toeplitz transform and prove that the Toeplitz transform of a second order recurrence sequence is another second order recurrence sequence. We investigate the injectivity of this transform and show how this distinguishes the Fibonacci sequence among other recurrence sequences. We then obtain new Fibonacci identities as an application of our transform.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008